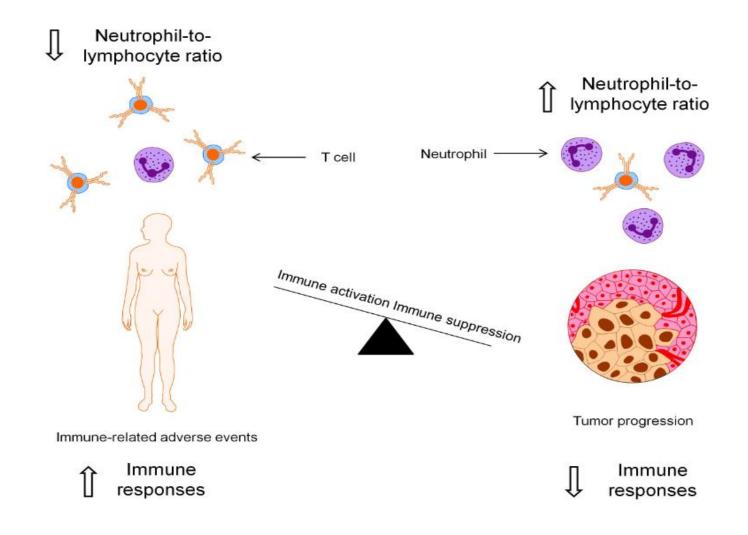
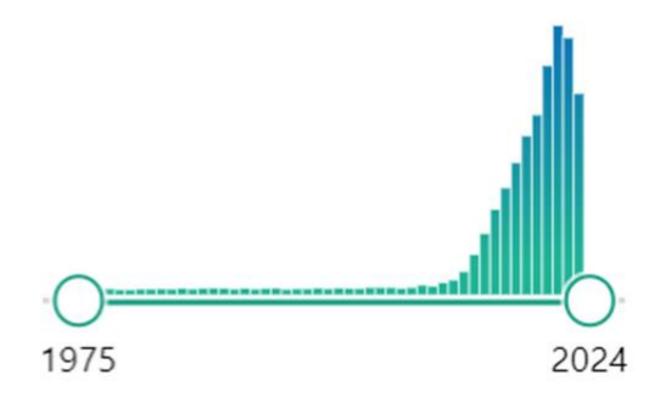


Neutrophil-to-lymphocyte ratio as a prognostic marker of immunotherapy outcome in advanced NSCLC


Daniel Parra Trujillo

Department of Medical Oncology. Hospital General Universitario de Alicante.

An elevated NLR seems to be related to tumour progression...



An elevated NLR seems to be related to tumour progression...

RESULTS BY YEAR

Perspective

The Potential Role of Neutrophils in Promoting the Metastatic Phenotype of Tumors Releasing Interleukin-8

Vol. 10, 4895-4900, August 1, 2004

Perspective

The Potential Role of Neutrophils in Promoting the Metastatic Phenotype of Tumors Releasing Interleukin-8

Vol. 10, 4895–4900, August 1, 2004

Perspective

The Potential Role of Neutrophils in Promoting the Metastatic Phenotype of Tumors Releasing Interleukin-8

Vol. 10, 4895–4900, August 1, 2004

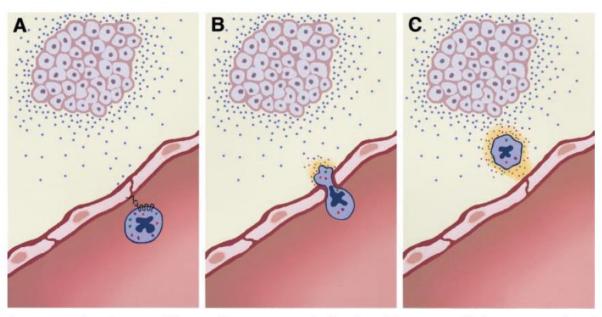



Fig. 1 A schematic representation of a neutrophil responding to IL-8 ectopically released by a tumor with the consequent invasion and remodeling of the ECM. A, the neutrophil (represented as a blue cell) binds to the IL-8 molecules (blue dots) that were released by the tumor and tethered to the vascular endothelial cells. This interaction contributes to the activation of the neutrophil. B, the emigration of an "activated" neutrophil from the vascular compartment. During this process, the neutrophil gains access to the ECM (light yellow area) and releases vesicles of enzymes (red, green, and purple dots) that initiate ECM remodeling (the darker yellow). C, the neutrophil, responding to the IL-8 concentration gradient, migrates toward the tumor. Remodeling the ECM during this process thereby establishes an environment more favorable to the progression and metastasis of the tumor cells.

Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer 2020.

Stefan Diem^{a,b,*,1}, Sabine Schmid^{a,1}, Mirjam Krapf^c, Lukas Flatz^{d,e,h}, Diana Born^f,

Diem S. et al. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer 2017;111:176–81.

Stefan Diem^{a,b,*,1}, Sabine Schmid^{a,1}, Mirjam Krapf^c, Lukas Flatz^{d,e,h}, Diana Born^f,

Diem S. et al. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer 2017;111:176–81.

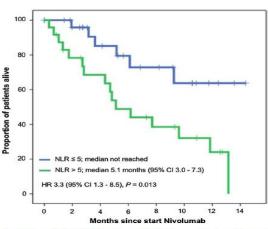


Fig. 3. Overall survival of NLR higher than median [=5] vs. equal or lower than median.

Stefan Diem^{a,b,*,1}, Sabine Schmid^{a,1}, Mirjam Krapf^c, Lukas Flatz^{d,e,h}, Diana Born^f,

Diem S. et al. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer 2017;111:176–81.

Systematic Review

Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Prognostic Markers for Advanced Non-Small-Cell Lung Cancer Treated with Immunotherapy: A Systematic Review and Meta-Analysis

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Katayama 2017	1.3297	0.3147	7.2%	3.78 [2.04, 7.00]	2017	
Suh 2017	1.7783	0.412	4.5%	5.92 [2.64, 13.27]	2017	
Russo 2018	0.131	0.4896	3.2%	1.14 [0.44, 2.98]	2018	
Zer 2018	0.7885	0.3362	6.5%	2.20 [1.14, 4.25]	2018	
Pavan 2019	0.7589	0.2306	12.1%	2.14 [1.36, 3.36]	2019	-
Matsubara 2020	1.2384	0.5475	2.6%	3.45 [1.18, 10.09]	2020	
Prelaj 2020	0.9517	0.2892	8.4%	2.59 [1.47, 4.57]	2020	_ ·
Russo 2020	0.7338	0.223	12.8%	2.08 [1.35, 3.22]	2020	_
Takada 2020	1.1632	0.1774	17.8%	3.20 [2.26, 4.53]	2020	-
Yang 2020	1.1366	0.3098	7.4%	3.12 [1.70, 5.72]	2020	
Ksienski 2021	0.9517	0.18	17.4%	2.59 [1.82, 3.69]	2021	
Total (95% CI)			100.0%	2.68 [2.24, 3.21]		•
Heterogeneity: Tau2 =	0.01; Chi ² = 12.03,	df = 10	(p = 0.2)	8); $I^2 = 17\%$	F	0.05 0.2 1 5 2
Test for overall effect:	Z = 10.85 (p < 0.00)	0001)			(Favours H-NLR Favours L-NLR

Figure 3. Forest plot H-NLR versus L-NLR to OS in patients treated with immunotherapy. Red dots represent study weights; the bivalve represent the overall effect.

Platini H, , et al. NLR and PLR ratio as prognostic markers for advanced non-small-cell lung cancer treated with immunotherapy: A systematic review and meta-analysis. Medicina (Kaunas);58(8):1069.

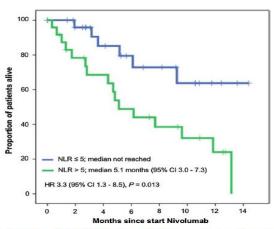


Fig. 3. Overall survival of NLR higher than median [=5] vs. equal or lower than median.

Stefan Diem^{a,b,*,1}, Sabine Schmid^{a,1}, Mirjam Krapf^c, Lukas Flatz^{d,e,h}, Diana Born^f,

Diem S. et al. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer 2017;111:176–81.

Systematic Review

Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Prognostic Markers for Advanced Non-Small-Cell Lung Cancer Treated with Immunotherapy: A Systematic Review and Meta-Analysis

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Katayama 2017	1.3297	0.3147	7.2%	3.78 [2.04, 7.00]	2017	
Suh 2017	1.7783	0.412	4.5%	5.92 [2.64, 13.27]	2017	
Russo 2018	0.131	0.4896	3.2%	1.14 [0.44, 2.98]	2018	
Zer 2018	0.7885	0.3362	6.5%	2.20 [1.14, 4.25]	2018	
Pavan 2019	0.7589	0.2306	12.1%	2.14 [1.36, 3.36]	2019	-
Matsubara 2020	1.2384	0.5475	2.6%	3.45 [1.18, 10.09]	2020	
Prelaj 2020	0.9517	0.2892	8.4%	2.59 [1.47, 4.57]	2020	_ ·
Russo 2020	0.7338	0.223	12.8%	2.08 [1.35, 3.22]	2020	_
Takada 2020	1.1632	0.1774	17.8%	3.20 [2.26, 4.53]	2020	-
Yang 2020	1.1366	0.3098	7.4%	3.12 [1.70, 5.72]	2020	_
Ksienski 2021	0.9517	0.18	17.4%	2.59 [1.82, 3.69]	2021	
Total (95% CI)			100.0%	2.68 [2.24, 3.21]		•
Heterogeneity: Tau2 =	0.01; Chi ² = 12.03,	df = 10	(p = 0.2)	8); ² = 17%	<u> </u>	05 0.2 1 5 2
Test for overall effect:	Z = 10.85 (p < 0.00)	001)			0.0	05 0.2 1 5 2 Fayours H-NLR Fayours L-NLR

Figure 3. Forest plot H-NLR versus L-NLR to OS in patients treated with immunotherapy. Red dots represent study weights; the bivalve represent the overall effect.

Platini H, , et al. NLR and PLR ratio as prognostic markers for advanced non-small-cell lung cancer treated with immunotherapy: A systematic review and meta-analysis. Medicina (Kaunas);58(8):1069.

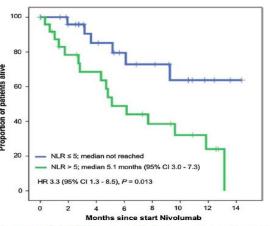


Fig. 3. Overall survival of NLR higher than median [=5] vs. equal or lower than median.

BMJ Open Association of the neutrophil to lymphocyte ratio and clinical outcomes in patients with lung cancer receiving immunotherapy: a meta-analysis

		Weight	Weight	Hazard Ratio	Hazard Ratio
Study	TE SE	(fixed)	(random)	IV, Fixed + Random, 95% CI	IV, Fixed + Random, 95% C
Russo A 2018	0.13 0.0695	4.2%	12.5%	1.14 [0.99; 1.31]	 -
Zer A 2018	0.80 0.3416	0.2%	3.3%	2.22 [1.14; 4.34]	<u></u>
Maymani H 2018	0.26 0.3285	0.2%	3.5%	1.30 [0.68; 2.48]	-
Mezquita L 2018	0.80 0.3015	0.2%	4.0%	2.22 [1.23; 4.01]	i
Diem S 2017	1.19 0.4790	0.1%	1.9%	3.30 [1.29; 8.44]	i
Bagley SJ 2017	0.73 0.2376	0.4%	5.4%	2.07 [1.30; 3.30]	ļ
Fukui T 2018	1.43 0.5762	0.1%	1.4%	4.17 [1.35; 12.90]	i i · · · ·
Park W[1] 2018	1.11 0.2993	0.2%	4.0%	3.03 [1.69; 5.45]	
Park W[2] 2018	1.24 0.3011	0.2%	4.0%	3.45 [1.91; 6.22]	
Ren, F 2019	0.77 0.3363	0.2%	3.4%	2.17 [1.12; 4.18]	<u></u>
Pavan, A 2019	0.13 0.0206	47.7%	14.1%	1.14 [1.09; 1.18]	
Passiglia, F 2019	0.41 0.6883	0.0%	1.0%	1.51 [0.39; 5.82]	
Minami, S 2019	1.59 0.4141	0.1%	2.4%	4.90 [2.18; 11.04]	
Ichiki, Y. 2019	1.11 0.3608	0.2%	3.0%	3.02 [1.49; 6.13]	
Dusselier, M[1] 2019	-0.37 0.4597	0.1%	2.0%	0.69 [0.28; 1.70]	
Dusselier, M[2] 2019	-0.89 0.3968	0.1%	2.6%	0.41 [0.19; 0.89]	
Svaton, M 2018	0.04 0.0213	44.9%	14.0%	1.04 [1.00; 1.09]	
Suh, Koung Jin[1] 2018	1.57 0.7247	0.0%	0.9%	4.82 [1.16; 19.95]	
Suh, Koung Jin[2] 2018	1.34 0.4470	0.1%	2.1%	3.82 [1.59; 9.17]	l — • —
Kiriu, T[2] 2018	0.27 0.2776	0.3%	4.4%	1.31 [0.76; 2.25]	
Khunger, M[1] 2018	0.37 0.2869	0.2%	4.2%	1.45 [0.83; 2.54]	++-
Khunger, M[2] 2018	0.97 0.3052	0.2%	3.9%	2.63 [1.45; 4.79]	i
Facchinetti, F 2018	1.17 0.4632	0.1%	2.0%	3.22 [1.30; 7.98]	· · · · ·
Total (fixed effect, 95% CI)		100.0%		1.12 [1.09; 1.15]	
Total (random effects, 95% CI			100.0%	1.62 [1.41; 1.87]	
Heterogeneity: Tau ² = 0.0351; Chi ⁴	= 120.40, df = :	$^{22} (P \le 0.0)$	11); I ² = 82%		
					0.1 0.5 1 2 10

Figure 2 Forest plot of the association between the neutrophil to lymphocyte ratio and overall survival in patients with lung cancer receiving immunotherapy.

Jin J, Yang L, Liu D et al. Association of the NLR and clinical outcomes in patients with lung cancer receiving immunotherapy: a meta-analysis. BMJ Open. 2020;10(6):e035031.

Study objective:

- Analysis of the correlation between pre-treatment neutrophil-to-lymphocyte ratio (NLR), Disease Control Rate (DCR) and Duration Of Response (DOR) in advanced NSCLC treated with immunotherapy.
- Assess a global correlation and a specific one in the CT-IT and IT group.
- Stratify the NLR with prognostic/predictive factors (age, histology, ECOG-PS, steroid and antibiotic use, smoking status, PD-L1...).

Secondary objectives:

- Analysis between NLR, Objective Response Rate (ORR), Progression Free Survival (PFS) and Overall Survival (OS).
- Construct a ROC defining cut-off point to refine the analysis.

Patient selection. Retrospective analysis.

- Patients diagnosed with NSCLC in a metastatic stage or who have relapsed after a curative treatment.

- First line treatment with inmmunotherapy or chemoimmunotherapy between January 2020 and January 2023.

- **Blood cell counts** used to measure NLR were performed whithin a **month prior to the start of the treatment**.

- A minimum of 4 months was required in order to assess response.

Baseline characteristics

Age: range from 31 to 89 yo. Median 64.5 yo.

Sex: 55.5% men. 44.4% women.

Smoking status: 93.3% smokers (59.5% active and 40.5%

former smokers).

Median pack-years: 48.

ECOG-PS: 74.4% were PS1.

Histology: adenocarcinoma 67.8%, SCC 20%.

NGS in 75.6% of patients.

Driver mutations: 14.3% KRAS G12C, 5.2% EGFR mut.

Stage IV at diagnosis: 75.6%.

		n	%
Sex	Men	50	55.5
Sex	Women	40	44.4
	Smokers	84	93.3
Smoking history	Active	50	59.5
	Former	34	40.5
	Never	6	6.7
	0	13	14.4
	1	67	74.4
PS	2	9	10
	3	1	1.1
	4	0	0
	Adenocarcinoma	61	67.8
Histology	Squamous	20	22.2
	NOS	6	6.7
	Neuroendocrine	2	2.2
	Large-cell	1	1.1
Mutation	NGS	68	75.6
deteccion	PCR	8	8.9
method	None	14	15.6
	No mutation	58	75.3
	KRAS	11	14.3
Type of mutation	EGFR	4	5.2
Type of mutation	MET	1	1.1
	HER2	1	1.1
	BRCA2	2	2.2
	I-IIIC	22	24.4
Stage at diagnosis	IV	68	75.6
Stage at diagnosis	IVA	35	38.9
	IVB	33	36.7

CT-IT schemes

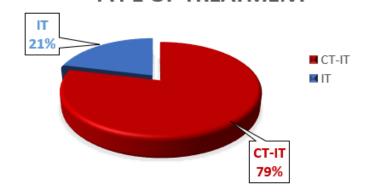
KN 189: CDDP/CBDCA + pemetrexed + pembrolizumab

KN 407: CBDCA + paclitaxel + pembrolizumab

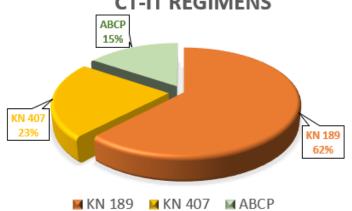
ABCP: atezolizumab + bevacizumab + CBDCA + paclitaxel

Immunotherapy

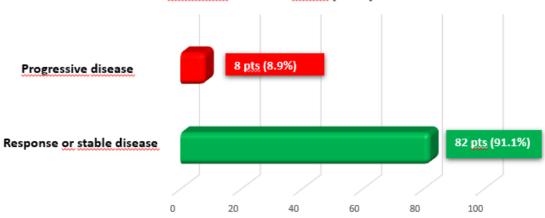
KN 024: pembrolizumab monotherapy


Median NLR

All patients: 3.7.


Response or stable dis: 3.7

Progressive disease: 4.3.



CT-IT REGIMENS

Disease Control Rate (DCR)

Duration of response (months)

Results (1). NLR and Disease Control Rate

Whole study population (n = 90)

		NLR g	roups	
		NLR < 5	NLR >5	Total
Disease Control Rate	Response or stable dis.	91,9%	89,3%	91,1%
	Proggresive disease	8,1%	10,7%	8,9%
Total		100,0%	100,0%	100,0%

CT-IT population (n = 71)

		NLR g	roups	
		NLR < 5	NLR > 5	Total
Disease Control Rate	Response or stable dis.	94,0%	90,5%	93,0%
	Progressive disease	6,0%	9,5%	7,0%
Total		100,0%	100,0%	100,0%

IT population (n = 19)

		NLR g	roups	
		NLR ≤ 5	NLR > 5	Total
Disease Control Rate	Response or stable dis.	83,3%	85,7%	84,2%
	Proggresive disease	16,7%	14,3%	15,8%
Total		100,0%	100,0%	100,0%

NLR cut-off point: ≤ 5 or > 5.

	Valor	gl	p value
Chi-cuadrado de Pearson	,167ª	1	,683

	Valor	gl	p value
Chi-cuadrado de Pearson	,281 ^a	1	,596

	Valor	gl	p value
Chi-cuadrado de Pearson	,019ª	1	,891

Results (2). NLR and Duration Of Response.

Whole study population (n = 90)

	NLR groups	Ν	Median DOR
Duration of response	NLR < 5	62	11,00
	NLR > 5	28	9,00
	Total	90	

CT-IT population (n = 71)

	NLR groups	Ν	Median DOR
Duration of response	NLR ≤ 5	50	10,50
	NLR > 5	21	9,00
	Total	71	

IT population (n = 19)

	NLR groups	Ν	Median DOR
Duration of response	NLR ≤ 5	12	14,00
	NLR > 5	7	9,00
	Total	19	

DOR: from 0 to 56 months. Median 10.5 months.

NLR cut-off point: ≤ 5 or > 5.

	DOR
U de Mann-Whitney	855,000
p value	,910

	DOR
U de Mann-Whitney	509,500
p value	,845

	DOR
U de Mann-Whitney	35,500
p value	,582

Subgroup analysis (1). NLR and DCR.

	ge >70) (n = 27)		NLR g	roups
	ige =/c	/ (11 – 27)		NLR < 5	NLR > 5
DCR	Respo	nse or stabl	e dis.	94,4%	66,7%
	Progre	ssive diseas	se	5,6%	33,3%
		Value	p valu	1e	

Age <70 (n = 63)		NLR groups	
_	180 170 (III = 00)	NLR ≤ 5	NLR > 5
DCR	Response or stable dis.	90,9%	100,0%
	Progressive disease	1,1%	0.0%

P value = 0.174

Chi-cuadrado 3,668ª

PD-	L1 < 1	% (n = 4:	3)	NLR g	
		•	·	NLR≤5	NLR > 5
DCR	Respo	onse or sta	ble dis.	94,3%	75,0%
	Progre	essive dise	ase	5,7%	25,0%
		value	p value		
Chi-cua	adrado	2,871 a	,090		

рг)-L1 ≥1% (n = 45)	NLR g	
-	/-LI 21/0 (II = 43)	NLR <u><</u> 5	NLR > 5
DCR	Response or stable dis.	88,0%	95,0%
	Progressive disease	12,0%	5,0%

P value = 0.412

	ADC (n = 61)	NLR g	
	7150 (11 = 02)	NLR ≤ 5	NLR > 5
DCR	Response or stable dis.	91,0%	100,0%
	Progressive disease	8,9%	0,0%

P value = 0.217

	SCC (n = 20)	NLR g	roups
	3CC (II = 20)	NLR ≤ 5	NLR > 5
DCR	Response or stable dis.	93,3%	80,0%
	Progressive disease	6,7%	20,0%

P value = 0.389

Subgroup analysis (2). NLR and DOR.

Age ≥70 (n= 27)	NLR groups		
	NLR ≤ 5	NLR > 5	
n	18	9	
Median DOR	9.5	9	
Mann-Whitney	60.5		
p value	0.29		

Age <70 (n= 63)	NLR groups	
Age <10 (II- 03)	NLR ≤ 5	NLR > 5
n	44	19
Median DOR	11	12
Mann-Whitney	378	
p value	0,55	

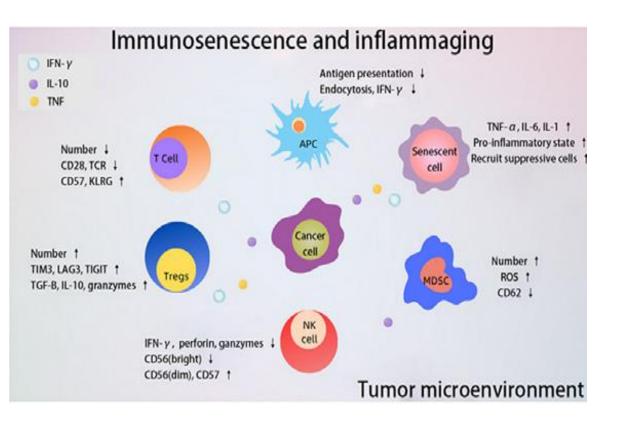
PD-L1 < 1% (n = 43)		NLR groups	
		NLR ≤ 5	NLR > 5
	n	35	8
	Median DOR	11	6
	Mann-Whitney	81.5	
	p value	0.067	

DD 14 540(/ - 45)	NLR groups	
PD-L1 ≥1% (n = 45)	NLR ≤ 5	NLR > 5
n	25	20
Median DOR	11	12.5
Mann-Whitney	232	
p value	0.68	

ADC (n = 61)	NLR groups	
	NLR ≤ 5	NLR > 5
n	45	16
Median DOR	11	9.5
Mann-Whitney	345	
p value	0.805	

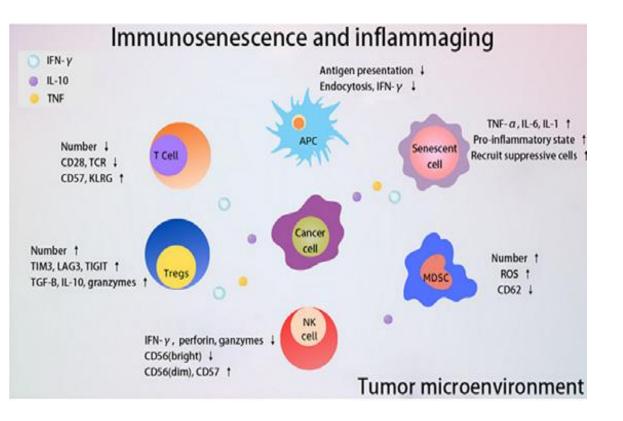
SCC (n = 20)	NLR groups	
	NLR ≤ 5	NLR > 5
n	15	5
Median DOR	9	9
Mann-Whitney	32	
p value	0.63	

Impact of immunosenescence and inflammaging on the effects of immune checkpoint inhibitors


Chuandong Hou ^{a,b}, Zining Wang ^{a,b}, Xuechun Lu ^{b,*}

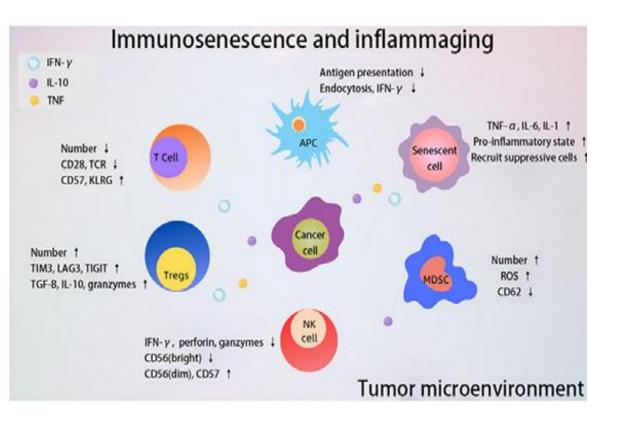
Impact of immunosenescence and inflammaging on the effects of immune checkpoint inhibitors

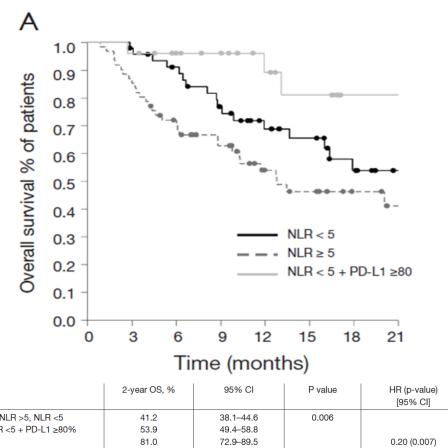
Chuandong Hou a,b, Zining Wang a,b, Xuechun Lu b,*



Impact of immunosenescence and inflammaging on the effects of immune checkpoint inhibitors

Chuandong Hou a,b, Zining Wang a,b, Xuechun Lu b,*


Neutrophil-to-lymphocyte ratio in combination with PD-L1 or lactate dehydrogenase as biomarkers for high PD-L1 non-small cell lung cancer treated with first-line pembrolizumab



Impact of immunosenescence and inflammaging on the effects of immune checkpoint inhibitors

Chuandong Hou a,b, Zining Wang a,b, Xuechun Lu b,*

Neutrophil-to-lymphocyte ratio in combination with PD-L1 or lactate dehydrogenase as biomarkers for high PD-L1 non-small cell lung cancer treated with first-line pembrolizumab

NLR >5, NLR <5 NLR <5 + PD-L1 ≥80% [0.06 - 0.64]

Rodriguez JE, et al. Immunosenescence, inflammaging, and cancer immunotherapy efficacy. Expert Rev Anticancer Ther 2022; 22(9):915-26.

Banna GL et al. Neutrophil-to-lymphocyte ratio in combination with PD-L1 or lactate dehydrogenase as biomarkers for high PD-L1 non-small cell lung cancer treated with first-line pembrolizumab. Transl Lung Cancer Res;9(4):1533-42.

Conclusions

No association between NLR, DCR and DOR was found in a retrospective analysis of our study population with a cut-off point of 5.

In the subgroup analysis, a trend for statistical significance was observed in those patients who are ≥70 yo. and PD-L1 negative.

An univariate analysis was made to carry out the first exploratory analysis. A multivariate analysis will be made in a second stage.

Next step will be performing an analysis of the **correlation between NLR and ORR according RECIST criteria, PFS and OS** including additional factors (PS, smoking status, gender, steroids and antibiotics use).

Acknowledgements

Multidisciplinary Thoracic Tumour Board Alicante University Hospital.

Medical Oncology Dpt. Alicante University Hospital:

- Natividad Martínez-Banaclocha.
- Juan Luis Martí.
- Guillermo Forner
- Bartomeu Massutí.

Research Team Medical Oncology Dpt. Alicante University Hospital:

- Yoel Montoyo.
- Elena Peña.
- Montse García-Araque.
- Natalia Gómez.
- Rosana Montoyo.

